If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+25=128
We move all terms to the left:
5x^2+25-(128)=0
We add all the numbers together, and all the variables
5x^2-103=0
a = 5; b = 0; c = -103;
Δ = b2-4ac
Δ = 02-4·5·(-103)
Δ = 2060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2060}=\sqrt{4*515}=\sqrt{4}*\sqrt{515}=2\sqrt{515}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{515}}{2*5}=\frac{0-2\sqrt{515}}{10} =-\frac{2\sqrt{515}}{10} =-\frac{\sqrt{515}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{515}}{2*5}=\frac{0+2\sqrt{515}}{10} =\frac{2\sqrt{515}}{10} =\frac{\sqrt{515}}{5} $
| -24+6s=-48- | | 6(x-9)=6x-54+1x | | 1/3x+4=1/2 | | 2(4x+12)+2(2x-10)=0 | | 69=5x-16 | | x2+4x+4=2x2=3x-2 | | 5x+1.5=2x+.6 | | (360+80x)/(120+x)=50 | | 2x^4=(2x+5) | | 3(4+s)=3(3s-1)-15 | | 4d-40=d+5 | | 118-w=241 | | -9x=54=72 | | 0.8(m-5)=5 | | 2x+1.2=x+2 | | (v+5)(-1.9)=6 | | x+3/12=2/6 | | 4d-10=d+5 | | 8w+6=70 | | 17y-5+3y=-5+14y+6y | | 5w+16=101 | | 2x+4=56x | | 1/8x+4=6 | | 7p+10=38p | | 8x-20=-76 | | 2(3x-3)=10 | | 9-4r=-7 | | 7x=(5-x) | | 5(3x-5)=6 | | 1-9b^2=0 | | 6x=2x-10 | | x+3/4=9/5 |